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Introduction

The main result in this thesis is a new generalization of Selberg’s inequality in
Hilbert spaces with a proof, see page 25.

In Chapter 1 we define Hilbert spaces and give a proof of the Cauchy-Schwarz
inequality and the Bessel inequality. As an example of application of the Cauchy-
Schwarz inequality and the Bessel inequality, we give an estimate for the
dimension of an eigenspace of an integral operator.
Next we give a proof of Selberg’s inequality including the equality conditions
following [Furuta].

In Chapter 2 we give selected facts on positive semidefinite matrices with proofs
or references.
Then we use this theory for positive semidefinite matrices to study inequalities.
First we give a proof of a generalized Bessel inequality following [Akhiezer,Glazman],
then we use the same technique to give a new proof of Selberg’s inequality.
We conclude with a new generalization of Selberg’s inequality with a proof.
In the last section of Chapter 2 we show how the matrix approach developed in
Chapter 2.1 and Chapter 2.2 can be used to obtain optimal frame bounds.

We introduce a new notation for frame bounds, see page vii.

v





Notation

a b frame bounds ( \text{\LARGE{$a$}} \text{\Large{$b$}} ).
P the set {1, 2, 3, . . .} of all positive integers.
N the set {0, 1, 2, 3, . . .} of all nonnegative integers.
R the set of all real numbers.
C the set of all complex numbers z = a + ib (a∈R, b∈R, i2 = −1).
H Hilbert space.

A∗ complex conjugate transpose matrix of A, A∗ = A
T
.

A ≥ 0 A is positive semidefinite.
A > 0 A is positive definite.
A

1
2 is the square root of a positive semidefinite matrix A.

I identity matrix.
U unitary matrix, UU∗ = U∗U = I.
u⊥v u and v are orthogonal vectors.
λ eigenvalue.
diag(λ1, . . . , λn) diagonal matrix.

λmax(A) largest eigenvalue of matrix A.

λmin>0(A) smallest positive eigenvalue of matrix A.

vii





Chapter 1

Classical inequalities

1.1 Hilbert Spaces

We will study inequalities in Hilbert spaces and in this section we give the
definitions and examples of Hilbert spaces.

1.1.1 Hilbert spaces

Definition 1. A vector space H with a map 〈. , .〉 : H ×H → C
(for real vector spaces 〈. , .〉 : H ×H → R) is called an
inner product space if the following properties are satisfied:
(I1) 〈x, x〉 = 0⇔ x = 0,
(I2) 〈x, x〉 ≥ 0 ∀x∈H ,
(I3) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 ∀x∈H ∀y∈H ∀z∈H ,
(I4) 〈αx, x〉 = α〈x, x〉 ∀x∈H ∀α∈C (for real vector spaces α∈R),

(I5) 〈x, y〉 = 〈y, x〉 ∀x∈H ∀y∈H (the bar denotes complex conjugation).

If in addition H is complete, that is

(I6)
(

lim
n,m→∞

〈xn − xm, xn − xm〉 = 0 xn∈H ∀n∈P∀m∈P
)
⇒(

∃ x∈H lim
n→∞
〈x − xn, x − xn〉 = 0

)
,

then H is called a Hilbert space.

From now on H will denote a Hilbert space.

The norm in H is defined by

1



2 CHAPTER 1. CLASSICAL INEQUALITIES

(I7) ‖x‖ =
√
〈x, x〉 ∀x∈H .

(I8) Every Hilbert space has an orthonormal basis, see [Folland,p176].

It means that there exists a system {eα}α∈Å of elements in H that is linearly
independent, that is 〈eα, eβ〉 = 0 if α , β and ‖eα‖ =

√
〈eα, eα〉 = 1 for each α and

for each x∈H we have x =
∑
α∈Å 〈x, eα〉eα (the series converges in H ).

If we have a separable Hilbert space we can replace {eα}α∈Å by {e j} j≥1 and the
sentence above can be reformulated in the following way:
It means that there exists a system {e j} j≥1 of elements in H that is linearly
independent, that is 〈e j, ek〉 = 0 if j , k and ‖e j‖ =

√
〈e j, e j〉 = 1 for each j and for

each x∈H we have x =
∑

j≥1 〈x, e j〉e j (the series converges in H ).

From now on a Hilbert space will be synonymous with a separable Hilbert space
unless otherwise specified.

When the basis of H is finite we say that H is finite dimensional otherwise
we say that H has infinite dimension.

1.1.2 Examples of Hilbert spaces

(a) R3 (real vector space) is a three-dimensional Hilbert space.

〈x, y〉 = x1y1 + x2y2 + x3y3 x, y are vectors in R3.

〈x, y〉 = xT y x, y are vectors in R3. xT = [x1 x2 x3], x =


x1

x2

x3

.
1
0
0

,

0
1
0

,

0
0
1

 is an orthonormal basis for R3.

(b) Rn (real vector space) is an n-dimensional Hilbert space.

〈x, y〉 =
n∑

j=1

x jy j x, y are vectors in Rn.

〈x, y〉 = xT y x, y are vectors in Rn, xT = [x1 x2 . . . xn], x =


x1

x2
...

xn

.

An orthonormal basis for Rn consists of n vectors each of dimension n.
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1
0
...

0

,

0
1
...

0

, . . .,

0
0
...

1

 is an orthonormal basis for Rn.

(c) 〈x, y〉A = (Ax)T y = xTAT y = xTAy x, y are vectors in Rn, A∈Rn×n,
A is positive definite (xTAx > 0 x , 0, for more details see Chapter 2.1.1).
(I3), (I4) are clearly satisfied.
We see that if A is positive definite, then (I1) and (I2) are satisfied.
A is positive definite implies that A is symmetric (AT = A).
We use the property that A is symmetric to show that (I5) is satisfied.
〈x, y〉A = (Ax)T y = xTAT y = (xTAT y)T = yTAx = (AT y)Tx

= 〈y, x〉AT = 〈y, x〉A x, y are vectors in Rn, A∈Rn×n.
It follows that (I5) is satisfied and that 〈x, y〉A is an inner product.
Since A is symmetric the eigenvectors from different eigenspaces
are orthogonal. We can find an orthonormal basis for A by first finding a
basis for each eigenspace of A, then apply the Gram-Schmidt process to
each of these bases.

(d) Cn (complex vector space) is an n-dimensional Hilbert space.

〈x, y〉 =
n∑

j=1

x j y j x, y are vectors in Cn.

〈x, y〉 = xT y x, y are vectors in Cn, xT = [x1 x2 . . . xn], x =


x1

x2
...

xn

.
An orthonormal basis for Cn consists of n vectors each of dimension n.

1
√

2
(1 + i)

0
...

0


,


0

1
√

2
(1 + i)
...

0


, . . .,


0
0
...

1
√

2
(1 + i)


is an orthonormal basis for Cn.

(e) `2 =
{

x = {ξ1, ξ2, . . .} :
∑
∞

j=1|ξ j|
2 < ∞ ξ j∈C∀ j∈P

}
.

`2 is an infinite-dimensional Hilbert space.

〈x, y〉 =
∞∑
j=1

ξ jη j x = {ξ1, ξ2, . . .}, y = {η1, η2, . . . } ξ j∈C η j∈C∀ j∈P.
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An orthonormal basis for `2 consists of infinitely many vectors
each of infinite dimension.
1
0
...

,

0
1
0
...

, . . . is an orthonormal basis for `2.

(f) L2 (X,M, µ) = { f : X→ C : f is measurable and
(∫
| f |2dµ

)1/2
< ∞
}

where
(
X,M, µ

)
is a measure space and f is a measurable function on X.

L2(X,M, µ) is an infinite-dimensional Hilbert space.

〈x, y〉 =
∫

x(t)y(t) dµ(t) ∀x(t)∈L2(µ) ∀y(t)∈L2(µ).

(g) An orthonormal basis for L2[0, 2π] is

1
√

2π
, 1
√
π

cos t, 1
√
π

sin t, 1
√
π

cos 2t, 1
√
π

sin 2t, . . . .

1.1.3 Riesz’s representation theorem

We will use the Riesz representation theorem in Chapter 1.3.3 example (b).

Let H ∗ be the set of all bounded linear functionals on a Hilbert space H .
For all F∈H ∗ we define ‖F‖H ∗ = sup

x∈H , ‖x‖=1
|F(x)|.

Theorem 1 (Riesz’s representation theorem).

∀F∈H ∗ there exists a unique y∈H such that F(x) = 〈x, y〉 ∀ x∈H (1.1)

Moreover, we have ‖y‖ = ‖F‖H ∗ .

A proof for Theorem 1 can be found in [Schechter,p30].
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1.2 Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality is one of the most used inequalities in
mathematics. Probably the most used inequality in advanced mathematical
analysis. The inequality is often used without explicit referring to it. See Chapter
1.3.3 (c) for an example where the Cauchy-Schwarz inequality is used.

1.2.1 Cauchy-Schwarz inequality

Theorem 2 (Cauchy-Schwarz inequality).
In an inner product space X,

|〈x, y〉| ≤ ‖x‖ ‖y‖ ∀x∈X∀y∈X (1.2)

The equality (1.2) holds if and only if x and y are linearly dependent.

Proof. y = 0 is trivial.
Let y , 0, then for any α∈C we have
0 ≤ ‖x − αy‖2 = 〈x − αy, x − αy〉 = ‖x‖2 − α〈y, x〉 − α〈x, y〉 + |α|2‖y‖2.

Choose α =
〈x, y〉
‖y‖2

and we have

0 ≤ ‖x‖2 −
|〈x, y〉|2

‖y‖2
−
|〈x, y〉|2

‖y‖2
+
|〈x, y〉|2

‖y‖4
‖y‖2 = ‖x‖2 −

|〈x, y〉|2

‖y‖2
,

and |〈x, y〉| ≤ ‖x‖ ‖y‖ follows.

If |〈x, y〉| = ‖x‖ ‖y‖ , then
we can choose α∈C |α| = 1, such that α〈x, y〉 = |〈x, y〉| , and we have∥∥∥‖x‖y − α‖y‖x∥∥∥2 = 〈‖x‖y − α‖y‖x, ‖x‖y − α‖y‖x〉

= ‖x‖ ‖x‖〈y, y〉 − α‖y‖ ‖x‖〈x, y〉 − α‖x‖ ‖y‖〈y, x〉 + αα‖y‖ ‖y‖〈x, x〉

= ‖x‖ ‖x‖ ‖y‖ ‖y‖ − ‖y‖ ‖x‖ ‖x‖ ‖y‖− ‖x‖ ‖y‖ ‖x‖ ‖y‖+ ‖y‖ ‖y‖ ‖x‖ ‖x‖

= 0
According to (I1), we must have ‖x‖y = α‖y‖x, so x and y are linearly dependent.

If y = βx, β∈ C, then

|〈x, βx〉|2 = 〈x, βx〉 〈x, βx〉 = 〈x, βx〉 〈βx, x〉 = β〈x, βx〉 〈x, x〉 = ‖x‖2 ‖βx‖2 ,
and we have |〈x, βx〉| = ‖x‖ ‖βx‖. �
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1.2.2 Examples of Cauchy-Schwarz inequality

(a) In R3 we have |〈x, y〉| ≤ ‖x‖ ‖y‖ x, y are vectors in R3.
We have equality if x and y are linearly dependent. This can be seen from
Lagrange identity which gives us 〈x, y〉2 = ‖x‖2 ‖y‖2 − |x × y|2,
x × y is the vector product, x, y are vectors in R3.

(b) In Rn we have

∣∣∣∣∣∣∣∣
n∑

j=1

x jy j

∣∣∣∣∣∣∣∣ ≤
√√√ n∑

j=1

x2
j

√√√ n∑
j=1

y2
j x, y are vectors in Rn.

∣∣∣xT y
∣∣∣ ≤ ‖x‖ ‖y‖ x, y are vectors in Rn, xT = [x1 x2 . . . xn], x =


x1

x2
...

xn

.
(c)
∣∣∣xTAy

∣∣∣ ≤ √xTAx
√

yTAy x, y are vectors in Rn.

A is positive definite, A∈Rn×n.

(d) In Cn we have

∣∣∣∣∣∣∣∣
n∑

j=1

x jy j

∣∣∣∣∣∣∣∣ ≤
√√√ n∑

j=1

|x j|2

√√√ n∑
j=1

|y j|2 x, y are vectors in Cn.

(e) In `2 we have

∣∣∣∣∣∣∣∣
∞∑
j=1

ξ jη j

∣∣∣∣∣∣∣∣ ≤
√√√ ∞∑

j=1

|ξ j|2

√√√ ∞∑
j=1

|η j|2

x = {ξ1, ξ2, . . .}, y = {η1, η2, . . .} ξ j∈C η j∈C∀ j∈P .

(f) In L2(µ) we have
∣∣∣∫ x(t)y(t) dµ(t)

∣∣∣ ≤ √∫ |x(t)|2dµ(t)
√∫
|y(t)|2dµ(t)

∀x(t)∈L2(µ) ∀y(t)∈L2(µ).

(g) In L2(µ), Assume that µ < +∞ and g ≡ 1 and f ∈L2(µ), then

the Cauchy-Schwarz inequality implies
∫
| f |dµ ≤

√∫
| f |2dµ

√
µ(X).

If µ is a probability measure, then µ(X) = 1.
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1.3 Bessel’s inequality

Another widely used inequality for vectors in inner product spaces is the Bessel
inequality.
The Cauchy-Schwarz inequality follows from the Bessel inequality.
In this section we prove the inequality and use it to give an estimate for the
dimension of an eigenspace of an integral operator.

1.3.1 Bessel’s inequality

Theorem 3 (Bessel’s inequality).
Let {e j} j≥1 be an orthonormal system in a Hilbert space H . Then∑

j≥1

|〈x, e j〉|
2
≤ ‖x‖2 ∀x∈H (1.3)

Proof. Let αk = 〈x, ek〉, then for any n∈P we have∥∥∥∥∥∥x − n∑
k=1

αk ek

∥∥∥∥∥∥
2

=

〈
x −

n∑
k=1

αk ek, x −
n∑

k=1

αk ek

〉

= ‖x‖2 −
〈 n∑

k=1

αk ek, x
〉
−

〈
x,

n∑
k=1

αk ek

〉
+

n∑
k=1

|αk|
2

= ‖x‖2 −
n∑

k=1

αk〈x, ek〉 −

n∑
k=1

αk〈x, ek〉 +

n∑
k=1

|αk|
2

= ‖x‖2 −
n∑

k=1

|〈x, ek〉|
2 +

n∑
k=1

|〈x, ek〉 − αk|
2

= ‖x‖2 −
n∑

k=1

|〈x, ek〉|
2.

We have
n∑

k=1

|〈x, ek〉|
2 = ‖x‖2 −

∥∥∥∥∥∥x − n∑
k=1

αk ek

∥∥∥∥∥∥
2

≤ ‖x‖2.

Let n→∞ in the last inequality. We have a sequence of nonnegative numbers,
where the sum of the numbers is bounded from above. Hence (1.3) follows. �

The inner products 〈x, e j〉 in (1.3) are called the Fourier coefficients of x with
respect to the orthonormal system {e j} j≥1.

Remark 1. We will look at a more general system later.
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Theorem 4.
Let {e j} j≥1 be an orthonormal system in a Hilbert space H .
Then {e j} j≥1 is an orthonormal basis if and only if for all x∈H we have

‖x‖2 =
∑
j≥1

|〈x, e j〉|
2 (Parseval’s identity) (1.4)

A proof for Theorem 4 can be found in [Weidmann,p39].

If we have an orthonormal system with only one element
(
e1 =

y
‖y‖

)
, then the

Bessel inequality becomes the Cauchy-Schwarz inequality.

1.3.2 Examples of Bessel’s inequality

(a) In R3 we have ‖x‖2 =
∑3

j=1|〈x, e j〉|
2 =
∑3

j=1 x2
j where x =


x1

x2

x3

 is a vector in R3

and e1 =


1
0
0

, e2 =


0
1
0

, e3 =


0
0
1

 is an orthonormal basis for R3.

(b) In Rn we have ‖x‖2 =
∑n

j=1|〈x, e j〉|
2 =
∑n

j=1 x2
j where x =


x1

x2
...

xn

 is a vector

in Rn and e1 =


1
0
...

0

, e2 =


0
1
...

0

, . . ., en =


0
0
...

1

 is an orthonormal basis for Rn.

(c) In Cn we have ‖x‖2 =
∑n

j=1|〈x, e j〉|
2 =
∑n

j=1|x j|
2 where x =


x1

x2
...

xn

 is a

vector in Cn and e1 =


1
√

2
(1 + i)

0
...

0


, e2 =


0

1
√

2
(1 + i)
...

0


, . . ., en =


0
0
...

1
√

2
(1 + i)


is
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an orthonormal basis for Cn.

(d) In `2 we have ‖x‖2 =
∑
∞

j=1|ξ j|
2
∀x∈`2 where

x = {ξ1, ξ2, . . .} ξ j∈C ∀ j∈P.

(e) In L2[0, 2π] we have ‖x‖2 =
a2

0
2 +
∑
∞

n=1 a2
n +
∑
∞

n=1 b2
n ∀x∈L2[0, 2π]

where a0 = 〈x, e0〉 =
1
√

2π

∫ 2π
0 x dt, a0∈R and

an = 〈x, en〉 =
1
√
π

∫ 2π
0 x cos nt dt, an∈R ∀n∈P and

bn = 〈x, en〉 =
1
√
π

∫ 2π
0 x sin nt dt, bn∈R ∀n∈P.

e0 =
1
√

2π
, e1 =

1
√
π

cos t, e2 =
1
√
π

sin t, e3 =
1
√
π

cos 2t, e4 =
1
√
π

sin 2t, . . . is an

orthonormal basis for L2[0, 2π].
a0
√

2π
+
∑
∞

n=1
an
√
π

cos nt +
∑
∞

n=1
bn
√
π

sin nt is the Fourier series of x.

(f) If e2 is not included in example (a),(b),(c),(e) above, then we do not have
an orthonormal basis and we have inequality instead of equality
(‖x‖2 ≥ instead of ‖x‖2 =).

1.3.3 Application of Bessel’s inequality

(a) Let S =
∑
∞

n=1
sin nx

na 0 < a ≤ 1
2 . S converges.

We will show that S can not be a Fourier series of a Riemann integrable
function f (x).

From the Bessel inequality we have
∑
∞

n=1
1

n2a ≤
1
π

∫ 2π
0 f 2(x) dx where 1

n2a

are the Fourier coefficients. This is impossible since
∑
∞

n=1
1

n2a = ∞

when 0 ≤ a ≤ 1
2 . Hence S can not be a Fourier series, see

[Gelbaum,Olmsted,p70].

(b) Let H be a closed subspace of L2[0, 1] that is contained in C[0, 1],
where C[0, 1] is defined as the space of continuous functions on [0, 1].
We will show that H is finite dimensional, see [Folland,p178 (ex.66)].

H is a Hilbert space since H is a closed subspace of L2[0, 1].
Both H with L2-norm and C[0, 1] with ‖ f ‖[0,1] = sup

{
| f (x)| : x∈ [0, 1]

}
are

Banach spaces, see [Griffel,p108].
Consider the inclusion H → C[0, 1] as a linear map of Banach spaces.
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This map f 7→ f is closed.

We have to check that
{
( f , f )∈H × C[0, 1] : f ∈H

}
is a closed subset of

H × C[0, 1].
Suppose that ( fn, fn) is a Cauchy sequence inH×C[0, 1], then fn is a Cauchy
sequence in C[0, 1] and there exists an f such that fn ⇒ f (uniformly on
[0, 1]). Then fn → f inH , that is ‖ fn − f ‖2 → 0 when n→∞ since ‖ fn − f ‖22 =∫ 1

0 | fn − f |2dt ≤ ‖ fn − f ‖2[0,1].

fn is a Cauchy sequence in H implies that fn is a Cauchy sequence in
C[0, 1] since H ⊂ C[0, 1].
By the closed graph theorem the inclusion is bounded, thus there exists a C
such that ‖ f ‖[0,1] ≤ C‖ f ‖2 for any f ∈H where ‖ f ‖[0,1] = sup

{
| f (x)| : x∈ [0, 1]

}
and ‖ f ‖2 =

(∫ 1
0 | f |

2 dµ
)1/2

.

Let x∈ [0, 1] and consider a linear functional Fx : H →H where Fx( f ) = f (x).
It is bounded since |Fx( f )| = | f (x)| ≤ ‖ f ‖[0,1] ≤ C‖ f ‖2 for all f ∈H .
Hence it is a continuous linear functional on H .

By Riesz representation theorem there exists a unique gx∈H such that
f (x) = 〈 f , gx〉 =

∫ 1
0 f (t)gx(t) dt for all f ∈H .

Further
| f (x)| = |〈 f , gx〉| ≤ C‖ f ‖2 ∀ f ∈H

⇓

|〈gx, gx〉| ≤ C‖gx‖2

⇓

‖gx‖
2
2 ≤ C‖gx‖2

⇓

‖gx‖2 ≤ C.

Let { f j}
n
j=1 be an orthonormal system of functions in H .

Then by using Riesz representation theorem and Bessel’s inequality and
‖gx‖2 ≤ C from previous result we have

∑n
j=1 | f j(x)|2 =

∑n
j=1|〈 f j, gx〉|

2 =
∑n

j=1|〈gx, f j〉|
2
≤ ‖gx‖

2
2 ≤ C2 x∈ [0, 1]. (∗)

⇓

n =
∫ 1

0

∑n
j=1 | f j(x)|2dx ≤

∫ 1
0 C2dx = C2. (∗∗)

⇓

n ≤ C2.
Thus dim H ≤ C2 and H is finite dimensional.
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Remark 2. C[0, 1] contains a subspace of polynomials where 1, x, x2, . . .

are linearly independent. It is infinite dimensional and is contained in
L2[0, 1], but not in H which is a closed subspace of L2[0, 1], that is
contained in C[0, 1]. The closure (L2[0, 1]) of this subspace is not
contained in C[0, 1].

(c) Let K(x, y) be a continuous function on [a, b] × [a, b].
A continuous function f on [a, b] is called an eigenfunction for K

with respect to a real eigenvalue r if f (y) = r
∫ b

a K(x, y) f (x) dx.

We will without loss of generality use [0, 1] instead of [a, b].

Let Er =
{

f ∈C[0, 1] : f (y) = r
∫ 1

0 K(x, y) f (x) dx
}
.

We will give an estimate for the dimension of Er, see [Lang,p108 (ex.7)].

Let Hr =
{

f ∈L2[0, 1] : f (y) = r
∫ 1

0 K(x, y) f (x) dx
}
.

Let h∈Hr. We want to show that h is continuous.

|h(y) − h(y0)| ≤ |r|
∫ 1

0 |K(x, y) − K(x, y0)| |h(x)| dx
⇓

≤ |r|
(∫ 1

0 |K(x, y) − K(x, y0)|2 dx
) 1

2
(∫ 1

0 |h(x)|2 dx
) 1

2
→0 when y→ y0

since K(x, y) is uniformly continuous and h∈L2[0, 1].
So we have that Hr ⊆ Er ⊂ C[0, 1] since all functions in Hr are continuous
as we shown above.
Clearly Er ⊆ Hr ⊂ L2[0, 1]. Hence Er = Hr.

If we can show that Hr is a closed subspace of L2[0, 1], then we can use
results from example (b) above to give an estimate for the dimension of Er.

Let fn → f in L2[0, 1] and fn∈Hr and g∈ Hr. Then we have

| fn(y) − g(y)| ≤ |r|
∫ 1

0 |K(x, y)| | fn(x) − g(x)| dx
⇓

≤ |r|
(∫ 1

0 |K(x, y)|2 dx
) 1

2
(∫ 1

0 | fn(x) − g(x)|2 dx
) 1

2
→0 when fn → g.

g is continuous and fn ⇒ g on [0,1].

Then f = g almost everywhere and f ∈Hr.

Hence Hr is a closed subspace of L2[0, 1].

Assume that dim Er ≥ n where n∈P, then there exists an orthonormal



12 CHAPTER 1. CLASSICAL INEQUALITIES

system { f j}
n
j=1 in H . From (∗) and (∗∗) in example (b) above we have that

n =
∫ 1

0

∑n
j=1 | f j(x)|2dx ≤

∫ 1
0 ‖rK(x, y)‖22 dx.

⇓

n ≤ r2
∫ 1

0

∫ 1
0 K2(x, y) dydx.

Thus dim Er ≤ r2
∫ 1

0

∫ 1
0 K2(x, y) dydx.
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1.4 Selberg’s inequality

Selberg’s inequality is not so well known as the Cauchy-Schwarz and the Bessel
inequality. It is an interesting inequality and it is also a generalization of the
Cauchy-Schwarz and the Bessel inequality.

1.4.1 Selberg’s inequality

Theorem 5 (Selberg’s inequality).
In a Hilbert space H ,

n∑
j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
≤ ‖x‖2 ∀x∈H y j , 0 y j∈H (1.5)

The equality (1.5) holds if and only if

(C) x =
n∑

j=1

α j y j, α j∈C, and for each pair ( j, k), j , k,

(C1) 〈y j, yk〉 = 0,
or
(C2) |α j| = |αk| and 〈α j y j, αkyk〉 ≥ 0.

See [Furuta,p218].

Proof. For any α j∈C we have

0 ≤

∥∥∥∥∥∥x − n∑
j=1

α j y j

∥∥∥∥∥∥
2

=

〈
x −

n∑
j=1

α j y j, x −
n∑

j=1

α j y j

〉
.

= ‖x‖2 −
〈 n∑

j=1

α j y j, x
〉
−

〈
x,

n∑
j=1

α j y j

〉
+

〈 n∑
j=1

α j y j,
n∑

j=1

α j y j

〉
.

= ‖x‖2 −
n∑

j=1

α j 〈y j, x〉 −
n∑

j=1

α j 〈x, y j〉 +

n∑
j=1

n∑
k=1

α jαk 〈y j, yk〉.

From 0 ≤ (|α j| − |αk|)2 we have |α jαk | ≤
1
2
|α j|

2 +
1
2
|αk|

2, and we have

≤ ‖x‖2 −
n∑

j=1

α j 〈x, y j〉 −

n∑
j=1

α j 〈x, y j〉+
1
2

n∑
j=1

n∑
k=1

|α j|
2
|〈y j, yk〉|+

1
2

n∑
j=1

n∑
k=1

|αk|
2
|〈y j, yk〉|.
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We can choose α j =
〈x, y j〉∑n

k=1|〈y j, yk〉|
, and we have

= ‖x‖2 −
n∑

j=1

〈x, y j〉〈x, y j〉∑n
k=1|〈y j, yk〉|

−

n∑
j=1

〈x, y j〉〈x, y j〉∑n
k=1|〈y j, yk〉|

+
1
2

n∑
j=1

n∑
k=1

|〈x, y j〉|
2
|〈y j, yk〉|(∑n

k=1|〈y j, yk〉|
)2 +

1
2

n∑
j=1

n∑
k=1

|〈x, yk〉|
2
|〈y j, yk〉|(∑n

j=1|〈yk, y j〉|
)2 .

= ‖x‖2 −
n∑

j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
−

n∑
j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
+

1
2

n∑
j=1

|〈x, y j〉|
2

∑n
k=1 |〈y j, yk〉|(∑n
k=1|〈y j, yk〉|

)2 +
1
2

n∑
k=1

|〈x, yk〉|
2

∑n
j=1|〈y j, yk〉|(∑n

j=1|〈y j, yk〉|
)2 .

= ‖x‖2 − 2
n∑

j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
+

1
2

n∑
j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
+

1
2

n∑
k=1

|〈x, yk〉|
2∑n

j=1|〈y j, yk〉|
.

= ‖x‖2 − 2
n∑

j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
+

1
2

n∑
j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
+

1
2

n∑
j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
,

and
n∑

j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
≤ ‖x‖2 follows.

We will show that

(C)

⇓

n∑
j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
= ‖x‖2

⇓

x =
n∑

j=1

α j y j ∧ 2α jαk 〈y j, yk〉 = |α j|
2
|〈y j, yk〉| + |αk|

2
|〈y j, yk〉| (∗)

⇓
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(C).

If (C), then for each pair ( j, k), j , k, where (C1) is true, we have

〈αkyk, α jy j〉 = |α j|
2
|〈yk, y j〉| (∗∗)

And for each pair ( j, k), j , k, where (C2) is true, we have (∗∗).

n∑
j=1

∣∣∣∣〈∑n
k=1 αk yk, y j

〉∣∣∣∣2∑n
k=1|〈y j, yk〉|

=

n∑
j=1

∣∣∣∑n
k=1 αk 〈yk, y j〉

∣∣∣2∑n
k=1|〈y j, yk〉|

=

n∑
j=1

∣∣∣∑n
k=1 αk 〈yk, y j〉

∣∣∣2 |α j|
2∑n

k=1|〈y j, yk〉| |α j|2

=

n∑
j=1

(∑n
k=1 αk 〈yk, y j〉

)∑n
k=1 αk 〈y j, yk〉α jα j∑n

k=1|〈y j, yk〉| |α j|2
=

n∑
j=1

(∑n
k=1 〈αkyk, α jy j〉

)∑n
k=1 α jαk 〈y j, yk〉∑n

k=1|〈yk, y j〉| |α j|2
.

We use (∗∗), and we have

=

n∑
j=1

(∑n
k=1 〈αkyk, α jy j〉

)∑n
k=1 α jαk〈y j, yk〉∑n

k=1〈αkyk, α jy j〉
=

n∑
j=1

n∑
k=1

α jαk 〈y j, yk〉, and

‖x‖2 =
〈 n∑

j=1

α j y j,
n∑

k=1

αk yk

〉
=

n∑
j=1

n∑
k=1

α jαk 〈y j, yk〉.

Hence (C) implies
n∑

j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
= ‖x‖2.

If
n∑

j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
= ‖x‖2, then choose α j =

〈x, y j〉∑n
k=1|〈y j, yk〉|

.

From the proof of the inequality (1.5) we have that equality (1.5) holds when
we have

0 =

∥∥∥∥∥∥x− n∑
j=1

α j y j

∥∥∥∥∥∥
2

and
n∑

j=1

n∑
k=1

α jαk 〈y j, yk〉 =
1
2

n∑
j=1

n∑
k=1

|α j|
2
|〈y j, yk〉|+

1
2

n∑
j=1

n∑
k=1

|αk|
2
|〈y j, yk〉|.

For each pair ( j, k), j , k we have
1
2
|α j|

2
|〈y j, yk〉| +

1
2
|αk|

2
|〈y j, yk〉| ≥ 0 and

∣∣∣α jαk〈y j, yk〉
∣∣∣ ≤ 1

2
|α j|

2
|〈y j, yk〉| +

1
2
|αk|

2
|〈y j, yk〉|.

Hence
n∑

j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
= ‖x‖2 implies (∗).

If (∗), then for each pair ( j, k), j , k, assume that (C1) is not true.
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Then 〈α j y j, αkyk〉 ≥ 0, and

2α jαk 〈y j, yk〉

|〈y j, yk〉|
= |α j|

2 + |αk|
2

⇓∣∣∣2α jαk 〈y j, yk〉
∣∣∣

|〈y j, yk〉|
= |α j|

2 + |αk|
2

⇓

2|α j| |αk| = |α j|
2 + |αk|

2

m

|α j| = |αk|.

Hence (∗) implies (C). �

When we use (C) we need only to calculate maximum (n−1)n
2 pairs since we

have symmetry.

If we have only one element (n=1), y= y1, then the Selberg inequality
becomes the Cauchy-Schwarz inequality.

If we have an orthogonal system {y j}
n
j=1 with several elements (n ≥ 2), 〈y j, yk〉 = 0

if j , k, let
(
e j =

y j

‖y j‖

)
j≥1

, then the Selberg inequality becomes the Bessel

inequality.

1.4.2 Examples of Selberg’s inequality

(a) In R3, x =


1
2
1

, y1 =


1
0
0

, y2 =


0
1
0

, y3 =


0
0
1

.

We have x =


1
0
0

 + 2


0
1
0

 +

0
0
1

 and for each pair ( j, k) in (1.5) we

have (C1) since y1⊥y2, y1⊥y3, y2⊥y3. By Selberg’s inequality we have

equality in (1.5) since (C) is satisfied. And it follows that we have Parseval’s
identity.
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(b) In R3, x =


1
2
1

, y1 =


1
2
2

, y2 =


1
1
0

, y3 =


1
1
1

.

We have x =


1
2
2

 +

1
1
0

 −

1
1
1

 and for each pair ( j, k) in (1.5) we have (C2).

By Selberg’s inequality we have equality in (1.5) since (C) is satisfied.

(c) In R3, x =


2
2
1

, y1 =


1
0
0

, y2 =


0
1
0

, y3 =


1
0
1

.

We have x =


1
0
0

 + 2


0
1
0

 +

1
0
1

, and for the following pairs (1, 2), (2, 3)

in (1.5) we have (C1) since y1⊥y2, y2⊥y3.
And for the following pair (1, 3) in (1.5), we have (C2).
By Selberg’s inequality we have equality in (1.5) since (C) is satisfied.

(d) In L2[−1, 1], x = 1 + t + t2, y1 = 1, y2 = t, y3 = t2.
We have x = 1 + t + t2 and for each pair ( j, k) in (1.5) we have (C2).
By Selberg’s inequality we have equality in (1.5) since (C) is satisfied.

(e) In R3, if x = ay1 + by2 + cy3, a∈R, b∈R, c∈R, then the Selberg inequality can
be written as

(〈ay1,y1〉+〈by2,y1〉+〈cy3,y1〉)2

|〈y1,y1〉|+|〈y1,y2〉|+|〈y1,y3〉|
+

(〈ay1,y2〉+〈by2,y2〉+〈cy3,y2〉)2

|〈y2,y1〉|+|〈y2,y2〉|+|〈y2,y3〉|
+

(〈ay1,y3〉+〈by2,y3〉+〈cy3,y3〉)2

|〈y3,y1〉|+|〈y3,y2〉|+|〈y3,y3〉|

≤ a2
〈y1, y1〉 + 2ab〈y1, y2〉 + 2ac〈y1, y3〉 + b2

〈y2, y2〉 + 2bc〈y2, y3〉 + c2
〈y3, y3〉.

If y1 =


1
2
2

, y2 =


1
1
1

, y3 =


2
2
3

 and x = a


1
2
2

 + b


1
1
1

 + c


2
2
3

,
then we have the following Selberg’s inequality,
(9a+5b+12c)2

26 +
(5a+3b+7c)2

15 +
(12a+7b+17c)2

36 ≤ 9a2 + 10ab + 24ac + 3b2 + 14bc + 17c2.

If a = b = c, then we have equality
(
77a2 = 77a2

)
.

(f) In L2[−1, 1], x = a1 + bt + ct2, y1 = 1, y2 = t, y3 = t2, a∈R, b∈R, c∈R.
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We have y1⊥y2, y2⊥y3 and we have the following Selberg’s inequality,

(2a+ 2
3 c)2

8
3
+

( 2
3 b)2

2
3
+

( 2
3 a+ 2

5 c)2

16
15

≤ 2a2 + 4
3 ac + 2

3 b2 + 2
5 c2.

m

(2a+ 2
3 c)2

8
3
+

( 2
3 a+ 2

5 c)2

16
15

≤ 2a2 + 4
3 ac + 2

5 c2.

If a = c, then we have equality
(

56
15 a2 = 56

15 a2
)
.



Chapter 2

Positive semidefinite matrices
and inequalities

In this chapter we give a new proof of Selberg’s inequality. It is based on the
theory of positive semidefinite matrices. This approach gives a new
generalization of Selberg’s inequality.

2.1 Positive semidefinite matrices

Positive semidefinite matrices are closely related to nonnegative real numbers.

2.1.1 Definition and basic properties of positive semidefinite
matrices

A n × n matrix A is normal, if A∗A = AA∗.
A n×n matrix A is Hermitian, if A∗ = A. Hermitian matrices are normal matrices.
A n × n matrix A is positive semidefinite, if A is Hermitian and x∗Ax≥ 0 for all
nonzero x∈Cn. We will then write A ≥ 0.
A n×n matrix A is positive definite, if A is Hermitian and x∗Ax>0 for all nonzero
x∈Cn. We will then write A > 0.
If A − B ≥ 0, then we will write A ≥ B.

The following is a list of some properties for positive semidefinite matrices that
are needed in this chapter.
Let A, B, C, F, I, S, U denote n × n matrices and x, y denote n × 1 vectors.

(i) If A is Hermitian, then A = U∗ diag(λ1, . . . , λn)U where U is a unitary

19
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matrix and λ j are nonnegative real numbers on diagonal matrix.
Proof. See [Zhang,p65]. �

(ii) If A is Hermitian, then S∗AS is Hermitian.
Proof. (S∗AS)∗ = S∗A∗S = S∗AS. �

(iii) A ≥ 0 implies S∗AS ≥ 0.
Proof. x∗Ax≥0 implies y∗S∗ASy≥0. �

(iv) A ≥ 0 implies det(A) ≥ 0.
Proof. Let Ax = λx where λ is an eigenvalue and x is an eigenvector of A
corresponding to λ. Then for each λ, we have x∗Ax = x∗λx ≥ 0⇒

λ = x∗Ax
x∗x ≥ 0⇒ det(A) = λ1λ2 . . . λn ≥ 0. �

(v) A ≥ 0 and det(A) > 0⇒ A−1
≥ 0.

Proof. For any y∈Cn there exists an x∈Cn such that

Ax = y ⇒ x = A−1y and 0 ≤ x∗Ax =
(
A−1y

)∗
A A−1y = y∗

(
A−1
)∗

y = y∗A−1y.
�

(vi) If A ≥ B, then S∗AS ≥ S∗BS.
Proof. A − B ≥ 0⇒ S∗(A − B)S ≥ 0⇒ S∗AS ≥ S∗BS. �

(vii) If A ≥ 0, then there exists a matrix B ≥ 0 such that B2 = A.

B is denoted by A
1
2 .

Proof. See [Zhang,p162]. �

(viii) If A ≥ B and A−1 exists and B−1 exists, then B−1
≥ A−1.

Proof. If C ≤ I, then I = C−
1
2 CC−

1
2 ≤ C−

1
2 IC−

1
2 = C−1.

A ≥ B⇒ I ≥ A−
1
2 BA−

1
2 ⇒ A

1
2 B−1A

1
2 ≥ I⇒ B−1

≥ A−1. �

2.1.2 Further properties of positive semidefinite matrices

We also need properties of products of two and three positive semidefinite
matrices. The product of two positive semidefinite matrices is not always
positive semidefinite.

(ix) (A ≥ 0 and B ≥ 0); AB ≥ 0.

Proof. A =
[
2 1
1 1

]
, B =

[
2 1
1 3

]
, AB =

[
5 5
3 4

]
, then A ≥ 0, B ≥ 0, AB � 0. �
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(x) If A ≥ 0 then A2
≥ 0

Proof. A ≥ 0⇒
(
y∗A

1
2

)
A
(
A

1
2 y
)
=
(
A

1
2 y
)∗

A
(
A

1
2 y
)
= x∗Ax ≥ 0. �

(xi) A ≥ 0 and B ≥ 0, then AB is Hermitian⇔ AB = BA.
Proof. (AB)∗ = B∗A∗ = BA. �

(xii) If A ≥ 0 and B ≥ 0 and AB = BA, then A
1
2 B

1
2 = B

1
2 A

1
2 .

Proof. We have A ≥ 0, B ≥ 0. AB is Hermitian.
Let A = U∗CU and B = U∗FU where C and F are diagonal matrices
and U is a unitary matrix. U is the same for A and B since A and B commute,
see [Zhang,p61]. Then we have

A
1
2 B

1
2 = U∗C

1
2 UU∗F

1
2 U = U∗C

1
2 F

1
2 U = U∗F

1
2 C

1
2 U = U∗F

1
2 UU∗C

1
2 U = B

1
2 A

1
2 . �

(xiii) If A ≥ 0 and B ≥ 0 and AB is Hermitian, then AB ≥ 0.

Proof. y∗ABy = y∗A
1
2 A

1
2 By =

(
A

1
2 x
)∗

A
1
2 B

1
2 B

1
2 y =

(
A

1
2 y
)∗

B
(
A

1
2 y
)
= x∗Bx ≥ 0.

�

(xiv) A ≥ 0, B ≥ 0, B is invertible, C ≥ 0 and ABC is Hermitian implies ABC ≥ 0.

Proof. Let F =
(
B

1
2 AB

1
2

) (
B

1
2 CB

1
2

)
. F is Hermitian since F = B

1
2 (ABC) B

1
2 ,

see (ii). We have
(
B

1
2 AB

1
2

)
≥ 0 and

(
B

1
2 CB

1
2

)
≥ 0, see (iii). From (xiii)

we have F ≥ 0 and finally from (iii) we have ABC = B−
1
2 FB−

1
2 ≥ 0. �

(xv) If A ≥ 0, then λmax(A)I ≥ A.
λmax(A) is the largest eigenvalue of matrix A.
Proof. Let B = U∗AU where B is a diagonal matrix and U is a
unitary matrix. Then we have λmax(A)I − B ≥ 0. Hence λmax(A)I ≥ A. �

(xvi) If A ≥ 0, then λmin>0(A) A ≤ A2.
λmin>0(A) is the smallest positive eigenvalue of matrix A.
Proof. Let B = U∗AU where B is a diagonal matrix and U is a
unitary matrix. Then we have B2

− λmin>0(A)B = B2
− λmin>0(B)B

= diag
(
λ2

1 − λmin>0(B)λ1, . . . , λ2
n − λmin>0(B)λn

)
≥ 0.

Hence λmin>0(A) A ≤ A2. �

(xvii) We define the Gram matrix for {y1, y2, . . . , yn} in a Hilbert space H
in the following way:
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G =


〈y1, y1〉 〈y2, y1〉 . . . 〈yn, y1〉

〈y1, y2〉 〈y2, y2〉 . . . 〈yn, y2〉
...

...
. . .

...

〈y1, yn〉 〈y2, yn〉 . . . 〈yn, yn〉

 (2.1)

We see that G is Hermitian.

u∗Gu = 〈β1y1 + β2y2 + . . . + βnyn , β1y1 + β2y2 + . . . + βnyn〉 ≥ 0

for all nonzero u =


β1

β2
...

βn

, β j∈C, that is G ≥ 0.

If y1, y2, . . . , yn are linearly independent, then G > 0.

(xviii) If we have a diagonal matrix D =


d1

d2 0
0 . . .

dn


where each d j

is a nonnegative real number, then we have u∗D u =
n∑

j=1

|β j|
2d j ≥ 0

for all nonzero u =


β1

β2
...

βn

, β j∈C, that is D ≥ 0.

Remark 3. If G =
[
〈y1, y1〉 〈y2, y1〉

〈y1, y2〉 〈y2, y2〉

]
, then det(G) ≥ 0 is same the

Cauchy-Schwarz inequality.
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2.2 Inequalites

In this section we will use theory for positive semidefinite matrices to study
inequalities. First we give a proof of a generalized Bessel’s inequality following
[Akhiezer,Glazman], then we use the same technique to give a new proof of
Selberg’s inequality. We conclude this section with a new generalization of
Selberg’s inequality with a proof.

2.2.1 Generalized Bessel’s inequality

We will need the following generalized Bessel’s inequality to prove Selberg’s
inequality in the next subsection.

Theorem 6 (Generalized Bessel’s inequality).
Let {y j}

n
j=1 be a linearly independent system in a Hilbert space H and let

G be the corresponding Gram matrix. Then

v∗G−1 v ≤ ‖x‖2 ∀x∈H (2.2)

where v =


〈x, y1〉

〈x, y2〉
...

〈x, yn〉

.
See [Akhiezer,Glazman,p24].

Proof. Let x =
n∑

j=1

α j y j + h where α j∈C, h∈H , h⊥y j, for any j∈{1, 2, . . . ,n}.

From
n∑

k=1

〈x, yk〉 =

n∑
k=1

n∑
j=1

α j〈y j, yk〉 +

n∑
k=1

〈h, yk〉, we have v = G w where w =


α1

α2
...

αn

.
‖x‖2 =

〈 n∑
j=1

α j y j + h,
n∑

j=1

α j y j + h
〉

=

〈 n∑
j=1

α j y j,
n∑

k=1

αk yk

〉
+

〈
h,

n∑
k=1

αk yk

〉
+

〈 n∑
j=1

α j y j, h
〉
+ 〈h, h〉

=

n∑
j=1

n∑
k=1

α jαk 〈yk, y j〉 + ‖h‖2
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= w∗G∗w + ‖h‖2

= w∗G w + ‖h‖2.

For a linearly independent system {y j}
n
j=1, the matrix G−1 exists, and we

have v∗G−1v = (G w)∗G−1G w = w∗G∗w = w∗G w.

We have equality when h = 0. �

If y j⊥yk, j , k and ‖y j‖ = 1, then G = I and the generalized Bessel

inequality can be written as
∑n

j=1|〈x, y j〉|
2
≤ ‖x‖2.

2.2.2 Selberg’s inequality

Here we give a new proof of Selberg’s inequality based on the theory of
positive semidefinite matrices.

Theorem 7 (Selberg’s inequality).
In a Hilbert space H ,

n∑
j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
≤ ‖x‖2 ∀x∈H y j , 0 y j∈H (2.3)

Proof. We have
n∑

j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
≤ ‖x‖2 ⇔ v∗D−1v ≤ ‖x‖2 where

v =


〈x, y1〉

〈x, y2〉
...

〈x, yn〉

, D =


d1

d2 0
0 . . .

dn


, d j =

n∑
k=1

|〈y j, yk〉|. See Appendix A.

We will prove that v∗D−1v ≤ ‖x‖2.

Let x =
n∑

j=1

α jy j + h where α j∈C, h∈H , h⊥y j, for any j∈{1, 2, . . . ,n}.

From the proof of the generalized Bessel’s inequality we have

‖x‖2 = w∗G w + ‖h‖2 and v = G w.

v∗D−1v ≤ ‖x‖2

m

(G w)∗D−1G w ≤ w∗G w + ‖h‖2
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m

w∗G∗D−1G w ≤ w∗G w + ‖h‖2

m

w∗GD−1G w ≤ w∗G w + ‖h‖2.

Hence it is sufficient to show that G − GD−1G ≥ 0.
First we will show that G ≤ D.

u∗Gu = 〈β1y1 + β2y2 + . . . + βnyn , β1y1 + β2y2 + . . . + βnyn〉 =

n∑
j=1

n∑
k=1

β jβk 〈y j, yk〉

≤

n∑
j=1

n∑
k=1

|β j| | βk | |〈y j, yk〉| ≤

n∑
j=1

n∑
k=1

(
1
2 |β j|

2 + 1
2 | βk |

2
)
|〈y j, yk〉|

=

n∑
j=1

n∑
k=1

|β j|
2
|〈y j, yk〉| for all nonzero u =


β1

β2
...

βn

, β j∈C.

u∗Du =
n∑

j=1

|β j|
2d j =

n∑
j=1

n∑
k=1

|β j|
2
|〈y j, yk〉|. Hence G ≤ D.

Further 0 ≤ G − GD−1G⇔ 0 ≤ G
(
I −D−1G

)
⇔ 0 ≤ G

(
D−1(D − G)

)
.

We have G ≥ 0, D−1
≥ 0, D−1 is invertible, D − G ≥ 0, and G − GD−1G is

Hermitian, so (xiv) is satisfied. Hence G − GD−1G ≥ 0. �

Remark 4. The proof for Selberg’s inequality is valid for all systems {y j}

including linearly dependent systems that has singular Gram
matrices.

2.2.3 Generalized Selberg’s inequality

Here we introduce a new inequality based on the results from the proof of
Selberg’s inequality in Chapter 2.2.2.

Theorem 8 (Generalized Selberg’s inequality).
In a Hilbert space H . If y1, . . . , yn∈H , G is the Gram matrix for y1, . . . , yn,
E ≥ G, and E is invertible, then

v∗ E−1 v ≤ ‖x‖2 ∀x∈H (2.4)
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where v =


〈x, y1〉

〈x, y2〉
...

〈x, yn〉

.

Proof. Let x =
n∑

j=1

α jy j + h where α j∈C, h∈H , h⊥y j, for any j∈{1, 2, . . . ,n}.

From the proof of the generalized Bessel’s inequality we have

‖x‖2 = w∗G w + ‖h‖2, and v = G w.

v∗E−1v ≤ ‖x‖2

m

(G w)∗E−1G w ≤ w∗G w + ‖h‖2

m

w∗G∗E−1G w ≤ w∗G w + ‖h‖2

m

w∗GE−1G w ≤ w∗G w + ‖h‖2.

Hence it is sufficient to show that G − GE−1G ≥ 0.

Further 0 ≤ G − GE−1G⇔ 0 ≤ G
(
I − E−1G

)
⇔ 0 ≤ G

(
E−1(E − G)

)
.

We have G ≥ 0, E−1
≥ 0, E−1 is invertible, E − G ≥ 0, and G − GE−1G is

Hermitian, so (xiv) is satisfied. Hence G − GE−1G ≥ 0. �

Remark 5. The Inequality in Theorem 8 is called Generalized Selberg’s
inequality because by choosing

E =


d1

d2 0
0 . . .

dn


where d j =

n∑
k=1

|〈y j, yk〉| we have

Selberg’s inequality.
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2.3 Frames

In this section we show how the matrix approach developed in Chapter 2.1 and
Chapter 2.2 can be used to obtain optimal frame bounds.
We introduce a new notation for frame bounds, see page vii.

2.3.1 Definition and Cauchy-Schwarz upper bound

We will follow [Christensen] in this subsection.

Definition 2.
A countable system of elements {y j} j≥1 in a Hilbert space H
is a frame for H if there exist constants 0 < a ≤ b < ∞, such that

a ‖x‖2 ≤
∑
j≥1

|〈x, y j〉|
2
≤ b ‖x‖2 ∀x∈H . (2.5)

The constants a, b are called frame bounds.

a is a lower frame bound, and b is an upper frame bound.
Frame bounds are not unique. The optimal lower frame bound is the supremum
over all lower frame bounds, and the optimal upper frame bound is the infimum
over all upper frame bounds. We can have infinitely many elements {y j} in a
frame. We will here assume that we have finitely many elements {y j} in a frame.
An important task is to estimate the frame bounds. We start with the upper
bound. The first estimate is quite obvious.

From the Cauchy-Schwarz inequality we have

m∑
j=1

|〈x, y j〉|
2
≤

m∑
j=1

‖y j‖
2
‖x‖2, which gives b =

m∑
j=1

‖y j‖
2.

From the Cauchy-Schwarz inequality it follows that we always have an upper
bound.

2.3.2 Upper bound

We will in this subsection use the generalized Selberg inequality to find the
optimal upper frame bound.

Lemma 1. Let {y j}
m
j=1 be a system of elements in a Hilbert space H and let
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G be the corresponding Gram matrix. Then for all x∈H we have

m∑
j=1

|〈x, y j〉|
2
≤ λmax(G) ‖x‖2 (2.6)

Moreover, we have

m∑
j=1

|〈x, y j〉|
2
≤ b ‖x‖2 ⇒ λmax(G) ≤ b (2.7)

Proof. First we will prove (2.6).
From (xv) in Chapter 2.1.2 we have λmax(G) I ≥ G, and then by applying
generalized Selberg inequality we have (2.6).

To prove (2.7) assume that
m∑

j=1

|〈x, y j〉|
2
≤ b ‖x‖2.

Choose x =
m∑

j=1

α jy j such that G w = λmax(G) w where w =


α1

α2
...

αm

, then

m∑
j=1

|〈x, y j〉|
2 = (G w)∗G w, and ‖x‖2 = w∗G w. We have

m∑
j=1

|〈x, y j〉|
2
≤ b ‖x‖2

⇓

(λmax(G))2 w∗w ≤ bλmax(G) w∗w

⇓

λmax(G) ≤ b. �

(2.6) means that λmax(G) is an upper bound.
(2.6) and (2.7) means that λmax(G) is an optimal upper bound.

Remark 6. We have not used any properties of frame for describing the
optimal upper bound. (2.6) and (2.7) holds for any finite system
{y j}

m
j=1 .

From the Selberg inequality we have
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m∑
j=1

|〈x, y j〉|
2
≤

 max
j=1,...,m

m∑
k=1

|〈y j, yk〉|

 ‖x‖2 (2.8)

This implies

λmax(G) ≤ max
j=1,...,m

m∑
k=1

|〈y j, yk〉| (2.9)

If G =
[
1 1
1 2

]
, then λmax(G) < max

j=1,...,m

∑m
k=1|〈y j, yk〉|.

Remark 7. b = max
j=1,...,m

∑m
k=1|〈y j, yk〉| is an upper frame bound for {y j}

m
j=1

that always exists. It may not be optimal but it is easier to compute
than λmax(G).

2.3.3 Lower bound

To find the optimal lower bound we use the condition that {y j}
m
j=1 is a frame.

Proposition 1. Let {y j}
m
j=1 be a sequence in a Hilbert space H .

Then {y j}
m
j=1 is a frame for span{y j}

m
j=1 .

Proof. See [Christensen,p4]. �

Corollary 1. A system of elements {y j}
m
j=1 in a Hilbert space H is a frame

for H if and only if span{y j}
m
j=1 = H .

Proof. See [Christensen,p4]. �

Lemma 2. Let {y j}
m
j=1 be a frame for a Hilbert space H and let G be the

corresponding Gram matrix. Then for all x∈H we have

λmin>0(G) ‖x‖2 ≤
m∑

j=1

|〈x, y j〉|
2 (2.10)
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where λmin>0(G) is the smallest positive eigenvalue of G.

Moreover, we have

a ‖x‖2 ≤
m∑

j=1

|〈x, y j〉|
2
⇒ a ≤ λmin>0(G) (2.11)

Proof. Let x =
m∑

j=1

α jy j, since from Corollary 1, we have x∈span{y1, . . . , ym}.

Then we have
m∑

j=1

|〈x, y j〉|
2 = (G w)∗G w, and ‖x‖2 = w∗G w where w =


α1

α2
...

αm

.

λmin>0(G) ‖x‖2 ≤
m∑

j=1

|〈x, y j〉|
2

m

λmin>0(G) w∗G w ≤ (G w)∗G w

m

w∗λmin>0(G) G w ≤ w∗G2 w.

We have λmin>0(G) G ≤ G2, see (xvi) in Chapter 2.1.2.

Next, assume a‖x‖2 ≤
m∑

j=1

|〈x, y j〉|
2. Choose x =

m∑
j=1

α jy j such that

G w = λmin>0(G) w where w =


α1

α2
...

αm

, then

m∑
j=1

|〈x, y j〉|
2 = (G w)∗G w, and ‖x‖2 = w∗G w. We have

a‖x‖2 ≤
m∑

j=1

|〈x, y j〉|
2

⇓

aλmin>0(G) w∗w ≤ (λmin>0(G))2 w∗w

⇓
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a ≤ λmin>0(G). �

(2.10) means that λmin>0(G) is a lower bound.
(2.10) and (2.11) means that λmin>0(G) is an optimal lower bound.

2.3.4 Tight frames

Definition 3. A frame is a tight frame if (2.5) is satisfied with a = b, that is if
the optimal upper frame bound and the optimal lower frame bound are equal.
a is then called the frame bound.

When we have a tight frame {y j}
m
j=1 in a Hilbert space H , (2.5) becomes

m∑
j=1

|〈x, y j〉|
2 = a ‖x‖2 ∀x∈H . (2.12)

Proposition 2. Assume {y j}
m
j=1 is a tight frame for a Hilbert spaceH with frame

bound a. Then

x =
1
a

m∑
j=1

〈x, y j〉 y j ∀x∈H . (2.13)

Proof. See [Christensen,p5] �

Theorem 9 (Casazza,Fickus,Kovačević,Leon,Tremain).
Given an n-dimensional Hilbert space H and a sequence of positive scalars
{a j}

m
j=1 , there exists a tight frame {y j}

m
j=1 for H of lengths ‖ym‖ = am for all

j = 1, . . . ,m if and only if,

max
j=1,...,m

a2
j ≤

1
n

m∑
j=1

a2
j (2.14)

Proof. See [Casazza,Fickus,Kovačević,Leon,Tremain,p33]. �

Theorem 10.
{y j}

m
j=1 is a tight frame for a Hilbert space H if and only if span{y j}

m
j=1 = H and

λmin>0(G) = λmax(G). G is the corresponding Gram matrix.
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Proof. Follows from Corollary 1, Lemma 1 and Lemma 2. �

2.3.5 Examples of tight frames

The following are examples of tight frames for R3.

(a) y1 =


1
0
0

, y2 =


0
1
0

, y3 =


0
0
1

, G =


1 0 0
0 1 0
0 0 1

.

(b) y1 =


1
2

1
2

1
2

, y2 =


−

1
2

−
1
2

1
2

, y3 =


−

1
2

1
2

−
1
2

, y4 =


1
2

−
1
2

−
1
2

,

G =



3
4 −

1
4 −

1
4 −

1
4

−
1
4

3
4 −

1
4 −

1
4

−
1
4 −

1
4

3
4 −

1
4

−
1
4 −

1
4 −

1
4

3
4


∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

.

(c) y1 =


1
0
0

, y2 =


0
1
0

, y3 =


0
0
1

, y4 =


1
0
0

, y5 =


0
1
0

, y6 =


0
0
1

,

G =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


∼



2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

(d) y1 =


1

0

0

, y2 =


0

1

0

, y3 =


0

0

1

, y4 =


1
2

1
2

1
2

, y5 =


−

1
2

−
1
2

1
2

, y6 =


−

1
2

1
2

−
1
2

, y7 =


1
2

−
1
2

−
1
2

,
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G =



1 0 0 1
2 −

1
2 −

1
2

1
2

0 1 0 1
2 −

1
2

1
2 −

1
2

0 0 1 1
2

1
2 −

1
2 −

1
2

1
2

1
2

1
2

3
4 −

1
4 −

1
4 −

1
4

−
1
2 −

1
2

1
2 −

1
4

3
4 −

1
4 −

1
4

−
1
2

1
2 −

1
2 −

1
4 −

1
4

3
4 −

1
4

1
2 −

1
2 −

1
2 −

1
4 −

1
4 −

1
4

3
4



∼



2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

We see that span{y j}
m
j=1 = R

3 and λmin>0(G) = λmax(G) in all the four
examples. By Theorem 10 we have tight frames in all the four examples.
In example (a) a = 1, in example (b) a = 1, in example (c) a = 2 and in example
(d) a = 2.





Conclusion

We have shown that by using a generalized form of nonnegative real numbers
called positive semidefinite matrices we get a nontrivial generalization of the
Selberg inequality.
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Appendix A

Here we will show the first equivalence in the proof of Theorem 7 in Chapter
2.2.2.

vTD−1v ≤ ‖x‖2

m

[
〈x, y1〉 〈x, y2〉 . . . 〈x, yn〉

]


1
d1

1
d2 0

0 . . .

1
dn




〈x, y1〉

〈x, y2〉
...

〈x, yn〉

 ≤ ‖x‖
2

m

[
1
d1
〈x, y1〉

1
d2
〈x, y2〉 . . . 1

dn
〈x, yn〉

]

〈x, y1〉

〈x, y2〉
...

〈x, yn〉

 ≤ ‖x‖
2

m

1
d1
〈x, y1〉 〈x, y1〉 +

1
d2
〈x, y2〉 〈x, y2〉 + . . . +

1
dn
〈x, yn〉 〈x, yn〉 ≤ ‖x‖2

m

|〈x, y1〉|
2∑n

k=1|〈y1, yk〉|
+

|〈x, y2〉|
2∑n

k=1|〈y2, yk〉|
+ . . . +

|〈x, yn〉|
2∑n

k=1|〈yn, yk〉|
≤ ‖x‖2

m

n∑
j=1

|〈x, y j〉|
2∑n

k=1|〈y j, yk〉|
≤ ‖x‖2.
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Casazza P. G., Fickus M., Kovačević J., Leon M. T., and Tremain J. C.,
A Physical Interpretation for Finite Tight Frames, Preprint submitted to Elsevier
Science, 15 October 2003.
http://www.math.missouri.edu/ pete/pdf/85.fiftf.pdf

Christensen Ole, An Introduction to Frames and Riesz Bases,
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